Unit 4 Remediation Packet

Essential Standard Do 1-4

1. Fifteen bacteria are Doubling one every 4.7 days. How long until there are 2000 bacteria?	2. Use change of base formula to evaluate: log_399
3. Change to log form: $4 = 16^{1/2}$	4. Solve: $log_5(x-4) = 3$

No Calculator 5 - 13

5. Evaluate: 3Log ₅ 5 - log ₈ 1	6. Evaluate: log ₃ (1/2) + log ₃ 54
7. Expand. $log_2 \frac{x^7 y^4}{\sqrt{w}}$	8. Solve for x: $\frac{1}{2}ln(10x) + 5 = 9$
9. Solve for x: $2\log_3(x+4) - 6 = 4C$	10. Solve for x: $log_3(x+7) = 2$
11. Condense. $ln x + 3lnw - 4ln y - \frac{1}{2}lnz$	12. Evaluate without a calculator. $log_4 32 - log_4 2$

$$log_5(\frac{1}{625})$$

$$lne^{3.2} + 3log_2 1$$

Calculator 14 -

Directions: Solve each equation algebraically. Use the properties of logarithms as needed. Round your answer to 3 decimal places. (Check for extraneous solutions).

15.
$$log_2 3x + log_2 7 = 9$$

16.
$$log_9(x-2) - log_9x - log_98 = 0$$

17. Only 500 grizzly bears still exist in the wild. Their population is decreasing at a rate of 12% each year.

a. What is the equation for this situation?

b. How many grizzlies will remain in the wild in 20 years?

18-19. Graph each equation below. For each graph, state the reference point, the equation of the asymptote, and the domain.

18)
$$f(x) = 2 \cdot \left(\frac{1}{3}\right)^x - 2$$

19)
$$g(x) = log(x+1) + 2$$

20. Solve the equation algebraically. Verify your answer on your graphing calculator.

$$2(8)^{3x} = 82$$

21. Solve for x. Fill in the lines to complete the answer.

$$\frac{1}{2}e^{x/2}=5$$

- 22. You invest \$1000 in savings. How much money will you have after 10 years if the account:
 - A. Is compounded once every 2 years @ 12%?
- 24. You invest \$1000 in savings. How much money will you have after 10 years if the account:
- B. Is compounded continuously @ 4.3%?

23. Match each equation with the correct graph. Explain how you know.

a.
$$y = 3(2)^{2x}$$

b.
$$y = 3(2)^{x/2}$$

Match the Equation, Graph, Table, & Scenario.

Equations	Graphs	Tables	Scenarios
25. $A = 20(2)^{2t}$	A 2500 1500	E t A 0 20 1 10 2 5	I. You have 20 chicken pox marks on your skin, and they double 4 times a day.
26. $A = 20(\frac{1}{2})^t$	B 270	3 2.5 4 1.25 F t A 0 20	J. There are 20mg of a substance, and it doubles twice a year.
27. $A = 20(2)^{\frac{l}{2}}$	300 150 100	2 40 4 80 6 160 8 320	K. There are 20 bugs and they double once every 2 years.
28. $A = 20(2)^{4t}$	C 20 30 30 30 30 30 30 30 30 30 30 30 30 30	G t	L. You have \$20 and you spend half of it every day.